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ABSTRACT

Two independent methods are described for calculating the
multiple scattering distribution for projected angle scattering

resulting when very high energy charged particles traverse a

thick scatterer, The single scattering law for rrojected angle

scattering is taken to be the Rutherford scattering law for pro-
Jected angle scattering modified at small angles by electron

shielding and at large angles by a nuclear form factor :;;(gp//42)

which gives the effect of the finite nuclear size. The calcu-

lations can be carried through for any reasonable choice of‘:;;
and have been carried through for two suggested choices of :;; |
for the examples of fast p-meson scattering in 2 cm and § cm
thick lead slabs, with good agreement for the two methods of

calculation, The results are compared with the theories of

Moliére and Olbert.
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SECTION 1, INTRODUCTION

Several multiple scattering theories have been publishedl’2’3’u

pe
k
7 :
:
¥
,
]
4
b
?;1.
“
}
|
|

1 E. s. Williams, Proc. Roy. Soc. Al69, 531 (1939);

S. Goudsmit and J. L. Saunderson, Phys, Rev, 58, 36 (1940);

H., S, Snyder and W, T, Scott, Phys. Rev, 76, 220 (1949);

H, W. Lewis, Phys, Rev. 78, 526 (1950}, :
2 @, Molidre, Z. Naturforsh 2a, 133 (1947); 3a, 78 (1948)
3 s, olbert, Phys, Rev. 87, 319 (1952); 4

M. Annis, H. S, Bridge, and S, Olbert, Phys. Reve. 89, 1216 (1953)

3|
Ly, a. Bethe, Phys. Rev, 89, 1256 (1953) . ?!
o A SR o S i - i i {
which are concerned with the angular distribution of particles E

passing, with no substantial loss of energy, through a thick ¥

material for which the single scattering law is the Rutherford

croas section modified at small angles due to electron screening, i

In this paper we shall present two methods by which a :

multiple scattering distribution for projected angle scattering f

can be obtained from more genersl single scattering laws than E
'; thoze already treated, We shall be concerned in particular with é i
single scattering which 1s Rutherford for a wide middle region, % ;
but 1s modified both at large as well as at small angles., In % :

i scattering from atoms the modification ot small angles 1s due %

to electron screening, while at large angles there can be modi-
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fications due to additional forces { as in the scattering of

T mesons from carbon ) or due to the finite extension of the
nucleus and the subsequent deviations from Coulomb?s law inside
the nucleus. We consider only the case where relatively small
@ are important so the approximation Cf © sin@ X tan @ is
appropriate,

There has been a good deal of experimental interest recent1y5’6

5 E. Amalci and G, Fidecaro, Nuovo Cimento, 7, 535 (1950);
W, L. Whittemore and R. P, Shutt, Phys. Rev. 88, 1312 (1952);
E. P. George, J. L, Redding, and P, T, Trent, Proc. Phys. Soc,
A66, 533 (1953);
B. Leontic and A. W, Wolfendale, Phil. Mag. Lli, 1091 {(1953),
© M, L. T. Kanangara and G. S. Shriksntia, Phil. Mage. Ll,1091 (1953).

S = - —— ————— e o= > At AeA ia i@ 8 8 8 4 is e e et e e c. 4 e TR ¥e) Ty el T

in the multiple scattering of p-mesons, Experimental results, after
being compared with the results of the M0113r92 and Olbert3
maltiple scattering theories have been interpreted as indicating
the exlstence of an anomolous p-meson-nuclear interaction. Among
the many difficulties arising in the Iinterpretation of these experi-
ments (see Appendix B), one of the most obvious seemed to be the
absence of a reliahle estimate of the expected multiple scattering
distributicn from extended nuclei,

In the Moliere multiple scattering theory the nucleus 1s
treated as a point charge. The single scattering cross section

is taken to be the Hutherford cross section nodified, at small

page three
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angles only, due to electron screening, This gives moi'e scat-
tering for large angles than would be expected from extended
nuclei. In the Olbert theory an attempt is made to estimate
the effect of the nuclear extension by multiplying the Moliére

projected angle single scattering law by a step function which

cuts off all scattering beyond a given projected angle qLSC X//R .

This, however, gives a very great underestimate of the multiple
scattering for angles larger than (ﬂ,, as for large angles
Olbertt's distribution falls off as a Gaussian which soon 1is
much smaller than even the coherent part of the single scat-
tering law,

In what follows we shall outline twec distinct procedures
by which a multiple scattering distribution can be obtained
from given single scattering laws., We deal with projected

angle scattering as this is the usual experimental parameter,

Our second method could be extended to include the total scat
tering angle, Sections 2 and 3 describe the two methods we
have developed for dealing with multiple scattering problems,
The results of these two sections have been used to calculate
the expected multiple scattering distribution of relativistic
p-mesons (cp = 1 Bev) passing through 2 and 5 cm of lead. Agree-
ment between the two methods is excellent, Appendix A contains
a discussion of the single scattering cross secticn used for the

aboves calculation., Appendix B gives a review of the experimental

situation with regard to p-meson scattering,
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SECTION 2. DESCRIPTION OF THE FIRST METHOD OF COMPUTING M ()

; The first method to be described consiasts of folding together

several simpler distributions in a manner somewhat analogous to

the actual effect of successive layers of the scatterer, Aithough
this method is simple in principle, it seemed on first inspection
that it would be extremely tedious to carry through such folding
operations, This did not prove to be the case when the computing
technicues described below were used, and we give a rather detailed
description of the procedure for this reason,

, The method is based on the observation that if f(9)d¢ ,

\ the probability of a single scattering through @ to ¢+d@ to

one side in projected angle, is given, then the multiple scat-
tering distribution M(q>) is completely defined., (Note that f(q>)
is not normalized to unity, but integration over all angles gives

iy the average numnber of single scatterings in traversing the sample.)
Furthermore, 1f the actual scattering slab were replaced by a
series of consecutive slabs A, B, C having single scattering

: : laws fA(CP)’ fB(q))’ m———y where
. (@) =1,(@) + £fx( @) + -=-- (1)

then the same multipie scattering distribution results on
= traversing all of the slabs in series. If M,(¢Q), Mp(P),~mmm
il are the separate multiple scattering distributions for A, B,~=-=-,

P4 then M((P) results on folding MA’ Mp, ==== together,

page five

i PRI e R SRS m e




22

B 11'} i

R-83
For the case of two components
o
M) = j M, (@) Mo(9-9)d 4, (2)
—o0

We require that only small ¢ are important no sin (ffz".;tan g’c‘é @,
and effectively consider @ as ranging from -~©°0 to + 00 , '
The distribution law for small angles is just the Rutherford

scattering law modified due to electron shieldinge. Following

Moliere W& Treprossit this as
£’ (90)=§(?2+9v§1)‘3/2 (3)

where 7>is the projected angle and q% is the screening angie

_ 1.1k m90221/3
137 cp

Pn

and @ = Lm (N t/A) (Z ez/pv)z. Here (N t/A) gives the scatterer

[1.13 + 3,76 (2/1378 )2 ]1/2

thickness in atoms/cm?; p is the momentuii of the incoming

particle; ?,='h/p; v is the incoming velocity: = is the "Fermi-

Thomas radius" of the atom = 1,67 x 10“2'1/3(92/m6c2). Z 1s the

atomic number of the scattering material (the incident particle

13 taken to be singly charged) and m, is the electron masS.

The modification in the above distribution law at larger
1 4
angles is given by multiplying £ (@) above by ?N(q’/ @ ) to

give
£(9)=3 (g° +92 Y2y (9/R) (1)
?N ((P/ qDO) is discussed in Appendix A.
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The trick of this method consists of selecting some angle
?’ which 18 a little smaller than the R, M, S. width of the
gaussian which approximates M(cp) at small angles, fA(Cf*) is
then set equal to £( P) for |q>]<<}’ andrOforl?l;So .
while (@) = O for (@I(‘P and = (@) for lpl 2 (P « The
multiple scattering due to rA is given with good accuracy by the

gaussian

2 2
M (P) = (2mqg?>)Y2 o~ 97/2CP72 (5)

! wherse
<o of 9* (924 9232 ag (6)

since ‘:7";(?/% )= 1 forlSD[S P’ « Also ?/>>¢Mf0r a reasonably

thick scatterer so we can ,simplify the resulting expression
-5 P/ P P/“ﬂm
¢ (?2> =q { (1+X /2] {ln (X""\I 1 + x2 )] so
(7)
<(p2> ~ Q i 1n (299’/%) - 1f
It 1s convenlent to use the rarameter g = QD/QVO and re-
place £(¢), Q, §, , and ?Jlby the equivalent quantities g(y),
B, T and y/, For the case of a p=-reson with c¢cp = 1 Bev and a
2 cm lead scatterer, P = 0.030L radiens = 1.74°, B = 0,126, and
Vo © 9,6 x 10‘“. For the choice y, = 0,5 we obtain <y2)= 0,75,

'
showing that this is a satisfactory cholce for y . Then, for
this case;

2
M, (y) = (1.50 7)~1/2 g=¥°/1:50 o
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whore the subscript 1 on MAl emphas}zes that this method rives
the distribution in terms of y = ¢/@, . (The dintribution function
Ma(x) of the next section is given in terms of the angle
characteristic of the Molisre theory,)
The rmultiple scattering distribution MBl(y) correspording

to single scattering angles 2 ?’= y’q% is obtained using the
following counsiderations, If we chose, not the full scatierer
thickness, but some sufficlently small fraction X , then the
single scattering law o¢ g(y) for \y])»y' would have essentially
unit weightirg for no scatterings at all, and very small weight-
ings for all |y| > y'. The corresponding multiple scattering
distribution would then be identical to the single scattering
law for |y[j> y' since there 1s negligible likelihood of more
than one scattering., If this distribution is folded together
with itself the multiple scattering is obtalned for fraction 2«
of the total thickness, This distribution differs from the
single scattering law by double scattering terms proportional to
o<2, so the fractional deviation is proportional to «<<1, If
the multiple scattering law for thickness 2 1s folded together
with itself the multiple scattering law for thickness lied results,
For lyl)»y' this distribution has a fractional deviation from
double that for 2% of an amount double that of the previous
process (always neglecting higher order effects). Thus the net
fractional correction from the single scattering law 1s 3 times

that obtained in the first folding. Subsequent foldings for 8o,

pago eight
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16 , 32, etc. have net fractional corrections (1 + 2 + U4),

(L +2+L4L+8), (L+2+1L4+ 8+ 16), etce times that of the

FOCRRRETY ) oS SPLPL Y

folding starting with thickness o¢ . These sums, 7, 15, 31, ees.,
would be 8, 16, 32,... 1f we had started our folding process with
an infinitesimal fraction of of, since going from « /2 to o« gives
i 1/2, from «< /4 to o< /2 gives 1/l4, etc. for the extra series terms
! (1/2 + 1/b + sees) = 1. We thus note that the net fractional cor-
rection after any stage of folding (neglecting higher order ef-
! fects) 1s just double the fractional correction obtained by the
given step {(i1.e, comparing the multiple scattering for y # 0 for
the glven thickness with double that for half thickness)., We
! C make use of the above feature to select as our starting thickness
a fraction 2™ of the total for which the fraction correction of
any of the points in the first folding 1s not too large. This
fractional correction 1s then doubled to account with good ac=-
curacy for the effect of not starting the process with an in-
o finitely thin sample, In the calculations for 2 cm lead end
cp = 1 Bev it was found to be suitable to start with 1/8 the
} sample thickness, while 1/16 the sample thickness was suitable
'% for 5 cm lead, The actual folding operutions can be carried
through with good accuracy by replacling the continuous fB(?)
by a discontinuous function having values only at regular grid
points, For the 2 cm lead case where y’ = 0,5, the reglon 0,5
to 0.7 was represented by 0.2 g(0.6), etc. so values were de=-

fined only at yy = 0, + 0.6, + 0,8, + 1,0, ~-=- with a maximum
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yj = 6,0 used in the calculations, For the 5 cm lead case we
used y' = 1.2 and O, intervals to y = 10,0, It was found con-
venient and permissible in these cases to neglect contributions
to values of y # O where [yl(,y'. (In cases where these contri-
butions are not negligible it requires only ‘slight additlional
computing time to include them,) The remaining computing tricks
can best be illustrated in terms of the exampls of the calculation
for the 2 em lead c%se where we started with 1/8 of the total
thickness, Let }a@(yj) be the lumped welghts given to the grid
points 0, + 0.6, + 0,8, =---, + 6,0 to represent the single scat-
tering law (0.2/8) g (yj) for iyj'>> 0.5, with

o ]
/(‘/8(0) =1 - 22 fl/s(yj) (9)

ﬂj)O
A calculation sheet 1s now preparcd in which values of yj =

0, 0.2, O.4, ==--, 6.0 are entered in the first column. The
values of /gol/éyj) are entered in the second column, An uncor-
rected multiple scattering distribution ‘gol/u(y) is then com-

puted where

[e]
/@/u‘yj’ = ;fol/s(yk)ﬁ/s(yj - W) (10)

Use is made of the fact that terms for y, # yj/Z appear

twice and we can write

o] (/] ° (] 2
fl/u(yj) = 22 ,(78(’544),@/?('35—'3&)+ [f//y(%/l)] ()
%(%/1
The calculations thus proceed as follows, In the third
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i o o
} 2
; column the values of /é;/e(yj) are rmultiplied by ,6;0).

The first number appearing in the column (yJ = 0 here) is circled

i
]
{
i

and 1s only counted once in the subsequent summing. The next

o
column entry starts at y, = 1.2 and contains products ‘15(0.6)
- I

) g
/éy(yj - 0.6)s Again the firat term at 3y ="1.,2"1s circled.
g

The nexf column starts at ¥y = 1.6 and contains terms /1120.8)
/iaéyj - 0.8). Subsequent columns are formed similarly to
produce a triangular array (requiring less than 1 hour of slide
rule computing time), Contributions from negative Y, are usually
% negligible but the terms t'or the first few negative values of T
l can be added if necessary. The rows are then added as indicated
. by Eq. 11 to give o’é;/h(yd)° The function ,éi/h(yj)‘;s then
| ' . compared w:lbth 2 Ay /B(y j) for vy # 0 and the differences are ad=-
ded to 4£;/h(yj) to obtain the corrected multiple scattering distri-
bution Il/u(yj)'. This is similarly folded with 1ta’olf to ,-(‘e:lve

J?l/a(yj)’ and a repetition gives (yJ) which cor?espond* to

§ : .
& MBl(y). Values of MAl(y) (Eq.8) are computed for Ty, = o, 0123
?: Oy, ==--, 6.,0. The final M,(y) is just the sum of %aussiaﬁr
;, centered at 0, + 0,6, + 0,8, ==~= + 6,0, -===, ‘
S
M (4.)= 2, A ) Vla (%~ ) ' (i)
b3 d % ~%
?ﬁ'f g/& i g
: ;?- The value of Ml(yj) for any yy 1is computed using Eqe. 12, For
_E@n yy near 6,0 the contributions from y, > 6.0 mst be estimated,
b ol
B Fortunately the single scattering g(y) and ‘é%yk) are decreasing

3
i

i3
¥, s

positive functions of y so the terms in Eq. 12 have a maximum for

e < Y5 and the remainder can be estimated by noting the behavior
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of the series for smaller values of yj.

The above observations suggest an eésy method for estimating
My (y) for large y in terms of M l(y) and MBl(y) without actually
carrying through the process indicated by Egq. 12, If MBl(y) can

be approximatod by a sfraight line on a semi-log plot of the form

o ! et i g ,.,.l =] el . ..
LT ‘.

"; M‘Bl(yk + x) = MBl(yk) e-lé': Cmdadn oot ol (13)
then.?q. 2 gives %>
2a2
o Ml(yj) = MBl(yj) e (1L)

f

This may be regarded as increasing MBl(yj) by a certain

amount on the semi-log plot to proauce M1(y*). Alternatively,

it can be written

MBl(i}j) = I"Il(yj +A) (15)

corresponding to a sidewise displacement A of MBl(y.) to generate
Ml(yj +A). The quantity A is obtained by plotting both Mkl(y)

and Mnl
the value of y at which MAl(y) has the same (loqgrithmic) slope

(y) on the same semi-log plot as in Fig. l. Let Asj be

that MBl(V) has at y = yj' Using Eqe. 13 shows that [& = <y2>>/a,
sc A = 151’2. Here a 1s assumed to be a slowly vaning fnnction
of y. (The plot by comparison can be made rapidly, using two
straight edges.) When the semi-log plot of MBl(y) also has

curvature so

2 2
~ . =x/a_x“/2b
MBl(yk + x) = MRl(yk) e e (16)
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then the equation analogous to Eq. 14 is
- b22<y.) —
M) (yy) =My l(yj)Lb /<b2'<&'>)] e2a (b° - <32 )

which, for b2 >)<y > cg;gzb-e written appro:acimateéy as
el RN CORIPS LRV
My (35) % Mgy (7)o (27)
Inspection of the final result shows that this eorresvonds

again to o sidewise displacement of MBl by A% 0.6AI to generate
Ml in the examples considered. An alternate method of sidewise
displacement is obtained by noting that M 1(x) M l(y-x) has its
maximum atzﬁ » about which it resembles a displaced gaussian.
This suggests that M (y ) is generated mainly from M 1(yk) in the
region y R -zéaso M; (y) should be generated using Mp, (y - As)
multiplied by e~ /2<% o (The last factor is the ratio MAl(
MAl(O).) These methods of generating the approximate curve for
Ml(y) can be carried out rapidly by simple displacements on the
semi-lcg plot and are quite instructive in giving insight into
the behavior of Mi(y). The difference between MRl(y) and gB(y)
decreases rapidly if the choice of the dividing angle y' is in-
creased, This is compensated largely by an increase in the width
of the gaussian MAl(y)’ and thus in the required sidewJse dis-
placement A to generate M, (y) from MBl(y). It is of interest
that the second method (of the next section), at large angles,

justv folds the sincle scattering law at largoe angles with a
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gaussian characteristic of the Molisre theory, which 13 somewhat
wider than MAl(y) for the method «I' selecting y' discussed above,
Figs. 1, 2, and L} show the characteristic functions when

only elastic processes are included. It is seen that Ml(y) re=-

. mains considerably greater than gp in a region where the Moliere

curve 1s almost the same as the point nucleus single scattering
curve, <This is consistent with the above discussion sinco the
logarithmic slope of the point nucleus g({y) is much smaller than
the extended nucleus g(y) so the required sidevise displacement
is less, and the result of a given sidewise displacement is also
less (using Eq. 15.)e When inelastic scattering is included,
Figs. 3 and 5, the curves approach those for a point nucleus,

decreased by a factor z 1

at very large ye.

It is instructive to make a further comparison of this method
and the second method (of the next section) for y > L4, say. This
method folds together the small angle nultlple scattering gaussian
with the large angle multiple scattering distribution, while the
second method essentially folds together a wider gaussian and the
law for single scattering. The second method uses an expansion
in terms of the parameter (h.G)'l described below, neglecting
terms of order (L;G)-2 and beyond, This very roughly corresponds
to neglecting multiple large angle scattering, so the first
method would be expected to be more reliable in cases where such
effects are not negligible,

As a final point of interest, we note that the curves given

in terms of y apply for all relativistic momenta wherg/s = 1l.
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In the example considered, y is in units of 1,74 Bev degrees,
Thus multiplying the absissa, snd dividing'the ordinate by 1.7L4
gives the distribution per Bev degree unit of ( ¢ pP), This is
shown by noting that £(¥ )d ¥ = g(y)dy so

gly) = B (y2 + 12)-3/2 (y) where
3 m N

-2
Im =="m/‘eo = ':.;;:;%;B' [1013 + 3476 (Z2/137(% )2] 1/2 gna
oe

Toe = ez/mecz:% 2.82 x 107 3¢m are independent of p for

SECTION 3, MODIFIED MOLIERE THEORY

A, Methods and Notation

To introducs the mathematical methods and notation used in
this ssctlion we review the derivation of the general expression
for the projected angle multlple scattering distribution for an
arbltrary single scattering cross section, The derivation fol=
lows that of Molisre® and Clbert> and applies when only relatively
small angles are important,

If £(9 )d ¥ is the probability that an incident particle

undergo a single scattering through the projected angle § tof + a¥

page fiftsen

s . P R e

2>

——

il ]

Ry ""“'M"M-Enm

e




ey ¢ L A aerne ——— i€ s ion S Y ]G AT RN T M

R-83

in its passage through the scatterer, then

P(e,%, g dg, =6 f @) F @) F@)dgda- AR (18)

o0

where o, =~£f(?)d<P , 18 the probability that the particle in
passing through the material has exactly n single scatterings
through the projected angles qﬁ, q%, ---, @, with angular inter-
vals d ?ﬁ, a P, ---, 4 ¢,. "%t 15 the probability that there

be no other scatterings besides 9%) Py === ¢,» Since we are
interested only in the final angle 4? we integrate over inter-

mediate angles and put

Py = ‘Tj ($@)p@)F @ et -0 dg- 0’&;
where fD(Q%QC{? is the probability that the particle emerge at
a projected angle between ¢ and @ + dg after exactly n scat~
terings in the material. The factor 1/nl occurs because in the
integration over intermediate angles the n$ permutations of P4
----(?n have each been counted, Since Eq, 18 holds for independent
events the order of the n scatterings 1s irrelevant,

Now introduce the Fourier representation of fhe single scat-

tering cross section., Let

©  ige
fco) = :E'er-_f g(g)e 4§ (20)

" .‘lgcy 80
g()= J$we de

-5 (21)
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(where g( g) is not related to g(y) of the previous section), Put-
ting Eq. 20 into Eq. 19 gives e )

l '?: LGP P —R)) d

P (q’)dcp- e T(am) f f‘i(?x) Uge e d§,” Jfﬁg) =

The integrations over @, --- P _, glve delta functions which,
after the §='1 - ?n 1 integrations yieldmw

P (fp)dq)*-"'q’e f [?(‘é)] Lﬁﬁ? (23)

The probability of a final projected angle 7’ after any number
n
of scatterings is just the sum of the F (‘?)Jfover all values

of n, % 1§
© o 4o g Z' C3<§)]"e§4g
P@)de= T BH@de= tee Do T (24)
where we use the result from Eg, 21
oQ
o = fr(q’) ag¢ = g(0)

From this 1t can be seen that the solution of the multiple
scattering problem 1s equivalent to the evaluation of the integral
in Eq., 24, Molidre® has given an evaluation of this integral
in the case of a screened Coulomb field, The main trick in
evaluating the integral lies in the observation that the existence
of mulciple scattering will smear out fine grained irregularities

4%

3 in the final distribution so the high Fourier components give a
negligible contribution, .
Molisre used the single scattering law of Eq, 3 appropriate
%
;: page seventeen
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for a 'point nucleus with electron shlelding. We are interested
in the case where this is modified by the nuclear "form factor"

SEN( F/ ?%) as in Eq. 4., Frcm the discussion of Appendix A we

note that
| for small 19/ 9ol

‘32@/%) x iz“{ov lavge | @ /Do | (our choice) (25)

with the rapld change occuring when @ ~ 2 ?6.
Olbert!s method consisted of using a step function for’};

"1 fov \Q|$CP°

E(?/%)z%o Gore NS P (Olbert) (26)

As mentioned in the introduction, this gives a very large under=-

- estimate of the multiple scattering for @ >> ¢, where the Olbert
function falls off as a gaussian while, for any reasoneble form
factor, the rmultiple scattering distribution 1lles above the
single scattering distribution £{§) for large §F, and thus far
above the Olbert distribution,

B, First Derivatlon of M, (x)

We first treat the multiple scattering from extended nuclei
as a correction to the Moliere theory by setting 3; =[I +(§N"5)] ;
where (F, - 1) gives the correction term, This is the method
used by Olbert for his step function, Such a treatment yields

satisfactory resulis for small angles, but 1s inconvenient for
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large'angles where a second method (described following this) 1s
preferred, Eq. I 13 written

-3/a,
QR oty @Y
| f@) = FF+R) [+ (F0] (27)

(¢* *‘(Pm)/l (28)

The first integral has been treated by Moliére7 end to a

T Ssee H, A. Bethe, Reference l, for a discussion of this integral,

sufficient degree of accuracy, is
oD

4 _;gq )
%i c?"—ﬁ»f)”’f ~Q[€fﬂm"€] (29)

We now introduce the various parameters typical of the Moliere

theory, follewing the notation of Olbert,

~1/a, Va
ﬁw(' %.zG‘P) jX=(6Q) P 5= @EE (g,

Z’I/sﬂ.-‘t
% and G = §66t "-2?@3,0 113 8%+ 376 (2/137)" ]

ERS is independent of the momentum in the relativistic region.

;T Putting Eq., 29 in 28, and using 30 vives

ol " T N

(0= 3(Fe) 107 R R Y

where T —-_( (exnx / Cg,'*(x/)(o/ l]a/X'
O3+ x&E Y~
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Inserting this result into Eq. 2l we obtain in terms of the

parameter X : . a

o0 . 2 L L1
ax=dx (dne™ e riel i+l
Mz(’q T 1 . (32)
We use the fact that G is a reasonably largs number (for moderate
foil thickness G varies from about 7 to 15) and expand the portion
of the exponential which is rultiplied by (2G)'1. This gives,

to first order in (2G)'1,

o0 : 2
T RVA * o
M, e = 25 {dme [+ 2 (TG rag1e ] (33)
~o0

After performing the integrations over ”( this becomes
2

-X
d . op]) =
M, ) dx = _e\r:_l_x N 7,%[)(’(’“”) Ko | (3L)

where o - (X,/xo)] _(x+)<')1 _(X-"’)l _x*
d X [I" N i {e + e _2e
i)

| X k=Y, a2
fxs) =4 fne™ T (ELT)

£'(X590) 1s the Molidre function., The integral K(x) which 03~

/
curs in Eq, 3l must be evaluated numerically for a given :?N(.X /Xo),

Eq. 34 i1s seen to have the form that was desired originally. The

integral which contains the effect of the nuclear extension oc-
iUy v oely

curs as a correction to ¢ ~ Am T ,_Té{: (x)"é) which is the

Molie\)re rltiple scattering distribution for a point nucleus in
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terms .of the projected angle parameter x, This corresponds to

?: = 1 for all x, If :%(x/xo) is the Olbert step function, Eq.26,

the correction term becomes the Olbert correction function K(x;xo)
if use is made of the fact that xo>>xm'.

Using Eq. 34 the multiple scattering distribution can be
determined for a particular :7":,(?/%); However, E4. 3l becomes
inconvenient for large values of x, because in that case K(x)
becomes almost equal to f?! (x;00) and the difference between two
large numbers must be used to givé a small one, For large values
of x therefore 1t is better to treat the modified cross section
directly, rather than as a correction to the Moliere distribution,

This 1s done as below,

C., SECOND DERIVATION OF MP(K);

Consider again the Fourier transform of the single scattering

law, . /
. o j;o(e.zEQ’_')c:}v(?r/(Po)@/
3(§)— ) = "3.‘.—,0 (P> + P v (35)

Introducing the Moliere parameters x, ')Z and G as defined

Eq, 30 wa get

© T, 0 rxe) (e X = )X
o X)) (36)

end 20 LM X Aa(n)
Z/i(-— e e q’l’?/

M (x)dX = g (36a)
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Eqe 36 of course i1s the Moliere-Fourier transform 1f‘§£ (x'/xo) = 1,
In the case of the point nucleus this integral is evaluated through
the observation that there exists an angle x!' = K at which the
integral can be split such that K>7 x, but K< »}\-‘ where ™M,
is the frequenry in the neighborhood of the main Fourler compon-
ents. Then in the integration up to W the frctor (cos n X! - 1)
can be put equal to =(w x1)2 /2 and, in the integration from
K to =0, (x12 + xma) =3/2 yecomes x! =3, Both integrations cen
be performed, and the splitting point H cancels up to terms of
the order Y 2, which are very small,

In the case with which we deal the argument is modified as
follows, Agaln we split the integral at an angle X where ﬁﬁ4<
xt = He<sm « Now we make use of the important property of
the form factor given in Eq. 25 that Eﬁv (x'/xo)%].for small
values of the argument x'/xo. In particular, for x' = 1/ our
chosen form of :£ (Appendix A) gives th(l/h)ﬁi 0,96 for the
2 cm lead case, and 0,93 for the 5 cm lead case, <The integral

up to Y 1s thus the same as in the case of the point nucleus,

A= 35 §~}2§%¥sﬂfe§w o

Performing the first integration and using the fact that x <« K,
Eq. 37 becomes

w BEL S &X/
=@ *“—ﬁ% (ﬁAQ+1GS‘_§él4L)” (38)

where Ymw L\ / 1&) (9/\ ¥ ~ 3/:1\
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It is understood that K must be much smaller than 1, If
now s(~ ) is put into Eq. 36s and the terms multiplied by (2(})"'1
a§tey
are expanded in the same way as before,the M integrations, the

following result 1s obtained for the first order in (2a)~1,
- Vo
- € ) * 1) U K/—’lq Y i F N (K,“)
- Loa(xX \
M.,_(x = Yrr\‘(’ G ( ‘J yG W (39)

where (&ﬂ: (mqg‘ﬂ (}\IX:) T(x, A d N and
K~ R ~ 2
- +N - ‘>‘\l - %
T(x,ﬂ:e_u L I T

In 1ts present form Eqe. 39 1s convenlent for calculation only
for large values of x(x2 L in the 5 cm lead case) because in this
case e X 1s s0 small that the precise value of H does not influ-
ence the result,

However, for smaller values of x the exact value of K is of
importance. In order that the expansion of (cos ~)x'-1) In Eq. 37
be correct W rmust be much smaller than 1, However, it is in-
convenlent to evaluate the final integral of Eq. 39 numerically
8

for very small values of W .

——— - -

8 We can see more clearly what error is introduced if K 1s al=-
lowed to become large by deing the followling, Expand T(x,}\ )

of Eq. 37 in powers of 2xA\ . Then neglecting terms of order

}\LL or (x\ )h gives T(x,N )% 2\? e-x2 (2x2-1)
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Integrating N( ., X) from K to L and letting L ( A/x,) =
N

in this :lntegral we obtain

[e T e (-2>< “ )b (L/1:26)+ 35 N, x)]

M, %)= 7G

But this is just the same result obtained by letting K_ = L in the

Fourier transform s( 7’( ) of Eq. 37 Thus allowing K_ tc become

large introduces the same error as would be introduced if the

final result were expanded in powers of 2X/\.

To overcome this difficulty one can use the property of the

form factor that ?()/X)xl for values of A rmuch larger than
'7;' .« Then f )Y T’(x A)a[A can be evaluated analytically

;
" where L = d’g. This makes the numerical integration ‘( ,\B'T'(X,R)?('\/X)t{/\

practicable, In doing this it will be seen that the dependence
upon K. vanishes and a convenient and accurate expression for

M,( X ) 18 obtained. We observe that if L <1/l then A can b‘g\‘_
consldersd small even if ZXA 1s not, Thus we can expand e'A

in T(X)>\ )e

(ca—-xk.zkx )= 2E (. Y - Weahadn=1)

T (%,2) = ade (40)
taking only terms up to AL o« We evaluate

el AX - ’) A X
= S 2 T\ )eld = [(—J'—-—" - b2y )

v

®his, after some labor, s== neglecting terms in yf or higher, gives
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Putting this result into Eq. 39 gives

-* \+$Q~':‘0~S o g '} (XA:}TQ( &&)\

M‘ ) ~

L) =

where9 ( e ‘ .
%(L. ¥) = 1(’*" -) \_9/« (L/\b\ + { _,.,-———-'c’ - + by 4

= b (us\-\ 'l\n(““ o T_.L 5.‘“\" 1"\‘
C

and

(1 Lx\ (l\-i\
SERL

g ;_Lf_ﬁ

9 In our earllier communication by the same title, Leon N, Cooper
Rev, 95, 1107 (1954), a(L,x) was given
2w 1)%m (K /1.26) which was a suf=-

and James Rainwater, Phys,

as 2(2x2 -1) q (X) = 2(2x
ficlently good approximation in the example there considered,

D, EVALUATION OF THE INTEGRALS

The integrals KX (x) and N(L, x) which occur in expressions

for the multiple scattering distributions derived above can easily
N(L, x) in particular can be

be evaluated by numerical means.
= 1/l4 or 1/2, and for such

evaluated conveniently for values of L
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values of L Eq. 43 is accurate. These integrals do not depend
on the momentum of the incoming psrticle but rather on 8 , which
T 1 in the relativistic region, Thus a single computatlion is
sufficient for all relativistic momenta. For different thick=-
nesses, or atomic number, the form factor is changed only through
the chari§e in 7(0 in z?N(X/Xo) o Table 1 gives the function
T(x)/\)Afor various values of X at grid spacings of i/4 for A .
Table 2 gives the values of the function q(L,X ) for L = 1/l4 for
relevant values of X ,

K(x) and N(L, X ) have been evaluated numerically for the
2 cm and 5 cm lead cases for grid spacings of A x = 1/2 and 1/h

10

using Weddle'!s rule, Comparison of the results for the two

0 H, Margenau and G, M, Murphy, "The Mathematics of Physics

and Chemistry", D, Van Nostrand Company, Inc.; New York,
No Y., 1943, page 461,

grids shows the largest numerical errors occur for the small
values of X where the correction term is unimportant, For
larger values of X (X2 3) the change in the numerical results
for grid changes from 1/2 to 1/4 1s less than 2 percent, In all,
the errors in the distribution due to numerical errors resulting
from the integration, for a grid of 1/4, appear to be less than
1l percent.

For very large values of X asymptotic formulas can be

developed, For a form factor which decreases asymptotically as
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' Y
const, xn the asymptotlic expression 1is

°M=°S[1+nh22+l +----]
Such expressions give reasonably accurate results for x 2 6 (5 per-
cent or better), The procedurs described near the end of section

2 1s also readily adapted to this method for a quick gravhical
correction procedure to obtain Ma(x) from the single scattering
lawe For real atoms at the larger angles incoherent scattering
predominates so that the form factor becomes S£(7V@Q)¢: 2”1, Then
the multiple scattering distribution is given by the asymptotic ex-
panéion of the Moliere distribution multiplied by z"l, This 1s

Ma(x)dx=;-§- [1"73(‘2*% +----]

The results presented in this section have included only
the first powers in (26)'1. It is possible to obtain the next
order, but in view of the large uncertainty in the nuclear form
factor :}: (C{’/‘Po) it was not considered worthwhile at present to
consider this term,

We wish to thank Professor Robert Serber for helpful dis-
cussions ogﬁgingle proton form factor, We also wish to thank
Miss Hilda Oberthal for her assistance with the computations of
the results of the modified Moliere theory.
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APPENDIX A, THE SINGLE SCATTERING LAW

The single scattering laws used in the calculations were ob-
tained in the following way. The Rutherford formula, modified at
small angles due to electron shielding, is glven in Eq. 3 rollowing
Moliére. When nuclear extension 1s considered, this must be
multiplied by a nuclear form factor 3;:(90/(?,) which conteins a
part representing elastic coherent scattering plus a part rep-
resenting inelastic scattering 3;,((?/%) = Fg (P/0%) + FIJJ: (P/B)e
In principle, if the nuclear wave functions were known exactly,
one would prefer to calculate Fg by an exact phase shift analysis
for epin 1/2 particles, and calculate F§ by considering in detail
all of the possible final states of the scattering system, ﬁow-
ever, the nuclear charge distribution, and the nuclear wave
functlons are not known exactly, and, 1in fact, measurements of

11

Fg for fast electrons are providing valuable information con-

11 R, w. pidd, C. L. Hammer, and E, C. Raka, Phys. Rev. 92,

436 (1953);

R, Hofstadter, H, R, Fechter, and J., A, McIntyre, Phys., Rev. 92,
978 (1953);

L. I. Shiff, Phys. Rev. 92, 988 (1953);

R, Hofstadter, B, Hahn, A, W, Knudsen, and J. A. McIntyre,

Phys. Rev. 98, 512 (1954);

D, R, Yennie, D, G, Ravenhall, and R, N. Wilson, Phys. Rev, 95,

500 (1954)
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cerning the nmuclear charge distribution, In particular, mu-

12 11

mesonic x-ray studies, fast electron scattering and other

Val., L, Fitch and James Rainwater, Phys. Rev. 92, 789 (1953);

12

L. N, Cooper and E, M, Henley, Phys. Rev. 92, 801 (1953);
John A, Wheeler, Phys. Rev., 92, 812 (1953);
D, L., Hill and K. W, Ford, Phys. Rev, 9}, 1617 and 1630 (195)

12, 13

experimental results which are sensitive to the nuclear

13 P, Bittsr and H. Feshbach, Phys. Rev, 92, 837 (1953);
B. G, Jancoviel, Phys. Rev. 95, 389 (1954);
D. C. Peaslee, Phys. Rev. 95, 717 (1954)

.- - - -

charge distribution, all agree that the nuclear charge distri-
bution is more compact than had previously been believed to be
the case. For a nuclear charge distribution AP (r) = ,/z for

r { R = roAl/3, and #(r) = 0 for r>R the radius R has clear
meaning and a best match to the above experiments gives rog;l.O
to 1.2 x 10-13cm for not too small A. Flementary considerations
of quantum mechanics show that such a model cannot be strictly
correct, and,/’(r) must be a continuous function of r., In this
case, although the different experiments are not always sensitive
in the same manner to the shape of /A (r), the eguivalent uniform

model rb is usually taken to be that value which gives the same

<:r2> as for the non-uniform /A (r). Prior to late 1953 the

page twenty-nine

.\,

PRRPWYIY H AN




R

R-83

value ‘of r  would have bsen considered to be '"well known" and of
magnitude l.l4 to 1.5 x 10'l3cm. Thus all of the comparison85'6
between the experimental and expected multiple scattering distri-
butions used this larger value of re

Untlil recently 1t has been customary to calculate Fg using
the Born approximation which gives a linear superposition of
the scattering amplitudes of the individual protons so the scat-
tered intensity is o;ﬂtgg form

, - Qe J. ' 2 ~C
A*|<ilZe YSiis = AR (a1)
J

2 s
where A™ is the scattering intensity of a single proton, q = k-ko

represents the vector momentum change in scattering, ;a 1s the
position coordimate of the jth proton in the nucleus, and the
evaluation is for the ground state |! > of the mucleus, Thus
(Fg)l/2 is just the Fourier transform of the nuclear charge

distribution, For a uniform nuclear model, letting y =<?/’¥Q )
this gives

2
Fg {y) = [;%~ (sin y - y cos y) ] (a2)

which gives diffraction minima at y = L.li9, 7.7, etc. Schifril
in particular has considered the form of Fg (y) in Born approxi-
mation for various simple analytic forms for /2 (r), We note that
Fg is of the form of the square of a real amplitude term, and
thus gives diffraction minima when the amplitude changes sign.
For distributions sufficiently peaked in the center and with a

gradual "tailing-eff", the amplitude may not change sign and
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7o will be a smoothly decreasing function of y. It is readily

seen from Eq. Al that Fg(O) = 1 and, by expandlng the exponentials

and using inversion symmetry through r = 0, that the leading term

{
i

in the decrease of Fg for small y depends on <:r%>' « In this

connection it 1s interesting to note that the widely used
-
- e “r/R) for which

3R%f%, Here/g is the ;
Although |

ity s d Ao brtt comiont

Williams® formula uses V(r) = (2 e2/r) (1

/Pr) = (L2/3) (R/7) e—2r/ﬁ’ and <r2>

charge density for a uniform nucleus otf radius R,

Williame implied that this distribution closely approximates a

uniform model, and it has been taken by others™ as corresponding

to the unif'orm model, it actually corresponds to a rather strongly

peaked distribution about r = 0 with <r2> larger by a factor of

5/2 than for a uniform distribution, and thus a correspondingly

more rapid initial decrease of Fﬁ for small y, For lafger v it

gives a unliform decrease of Fg with y with an asymptotic form

16/yu for large y. In the region of large y Eg. A2, between

minima, has a steady decrease with y which can be estimated by

neglecting the sin y term and setting |cos y] =~ 1 to give an |

asymptotic form 9/yu, which is below that for the Williams distri- !

butilon,
The detailed phase shift calculations of Yennie, Ravenhall,
and Wilson, using various nssumed//7(r), show that the shape of

Fg (y) is energy-dependent and significantly diffcrent from the

Born approximation value for high Z materials. In particular,

the scattering amplitude is a complex number which circles the
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value zero in the complex plane when "changing sign"™, Thus the

"diffraction minima"™ are largely missing, or are greatly reduced
in magnitude compared to the Born approximation results, This
feature 1s aiso apparent in the experimental results and had led
.to an initial "Beorn approximation interpretation™ that//o(r) must
resemble an expcnential distribution, The interpretation favored
at the time of this writing is that‘/o(r) can be falrly constant
for values of r containing most of the charge distribution, with
a gradual dropping off at the "surface",

; In view of the above results, and with the consideration that

i Wwe wish to chiooss a form for Fg which will not underestimate the

i expected multiple scattering due to the known electromagnetic
interaction of mu-mesons with pretons in examining the results
of experiments investigating possible "anamolous scattering",
we have chosen the following form for Fg; For y =0, 1, 2, 3
we choose Fy = 1.00, 0.82, 0.50; and 0.15 to approximate Eq. A2
after the effect cf the first diffraction minimum is "removed",
A smooth curve through these points 1s then joined smoothly to

‘ F§’= 12/yu for y > li, this being between the Williams formula
and the value obtained above for a uniform distribution, In
principle this should be applied to the cross section for total
angle scattering rather than for projected angle scattering as

.} we do here, The consequences of this approximation are discussed

foilowing the discussion of Fi.

The calculation of the inelastic scattering is quite 4if-
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ficult to perform exactly., Amaldi, Fidecaro, and Marianilu have

U g, Amaldi, G. Fidecaro, and F. Marisni, Nuovo Cimento T,

’ 553 (1950)

carried out detailed calculations of the inelastic and elastic
scattering expectea, using a particular indepedent particle
nuclear model, For incident particles of very high kinetic energy
and cp ~ 100 Mev), a Born approximation treatment similar to

that used in the theory of x-ray scattering by atoms should be

reasonably accurate and gives the result, as for x-rays,lS that

.

15 ¢, £, Al H, Compton and S, K. Allison, "X-rays in Theory

and Experiment", D, Van Nostrand and Co, (1935), Chapter 3,

F§ ~z271 (1 - Fg) times the form factor for the scattering by a
single proton, This last factor must be included if the proton
is not effectively a point charge (due, say, to meson cloud ef=-
fects), Amaldi etallu have particularly emphasized this point

¢ and have calculated the expected effect of the proton "size™ on

the basis of a simple model, Experimentally, however, 1t seems

that the proton charge dilistribution should be treated as being

ot

confined to a surprisingly small volume on the basis of electron

] scattering experiments,16 and, by inference, from the Interpre-

}
& 16 Je A, McIntyre and R, Hofstader, Bulletin of the American

Physical Scciety, Vol, 29, paper Il (alsc see paper I2) A.P.S.
meeting at Seattle, Washington, July, 1954,

-i‘

:
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tationl7 of the experiments on the neutron-electron interaction.

17 See L, I, Foldy, Phys. Rev. 87, 675 (1952) for a discussion

of this subject and for reference to earlier papsrs,

The experiments show that tlhie proton form factor is essentially
unity for cp ~ 200 Mev and at angles A'90°, so we take it to be
essentially unity for cp @ values considered in this paper. For
largy envugn vaiue of cp P this factor will eventually become
important and require consideration,

If the single proton form factor 1s set equal to unity, the
above expression for F§ can be understood by analogy with x-ray
scattering where the "inelastic" scattering corresponds to modi-
fied Compton elastic scattering, where the recoil mmentum is
tsken up by a single (moving) electron rather than by the atom
as a whole, The final states of importance correspond to recoil
electron momenta centered about the photon momentum transfer,
modified by the initial electron momentum distribution, which
is given by the Fourier transform of the ground state wave funétion
of the atom, For charged particles of kinetic energy and cp >>
100 Mev, and for y >> 1, the final states of importance should
be attainable with moderate esnergy loss, so the expression for
the total scattering intensity in a given directiop can be written
with fair accuracy by summing over-all final states, keeping'g,

for a given angle, the same as in the elastic case,
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wm J (43)

Mby closure, For an independent particle model Eq., Al and Eq, A3

X -j,?{t"
plix

lead to the above gquoted result for F%. Thus we set
F =R = B Z (- FY) (AL)
N TN N — N N

The remalning point to be coﬁsidered 1s the error intro-
duced when :}% is applied to the law for projected (rather than
total) angle scattering, For a do/dN law varying as ?;n , the
projected angle single scattering law is obtalned by multiplying
do/d0 by PC(1), where <(n) = n/2, I/3, 16/15, 5n/16, and 32/35
for Nn=1.4, 5, 7, 8, and 9 respectively (C(V\)*lf Ty d?).
In going from n =i for Rutherford scattering to V\= 8, (which
is obtained when the asymptotic form of Fg multiplies the Ruther-
ford scattering, c(n) is reduced by the factor of 5/8, This rep-
resents an extreme situation since :;& is more slowly varying,
We note that the above effect can approximately be taken into
account by choosing r,~ 10 percent larger than otherwise when
applying iFh to the law for projected angle scattering, In the
examples we choose r_ = l.l x 10 =13 cm, corresponding to r T
1,0 x 10° 13 cm for do/dN, In view of the uncertainty concerning
the exact form ror the true :fﬁ(y), we conusider this approxime

ation to be adequate {'or the present,

page thirty-five

bR IR0 da



:_...._.. _.-

ey

R-83

APPENDIX B, DISCUSSION OF THE EXPERIMENTSS’6
ON MU-MESON SCATTERING

The interest of the suthors in the multiple scattering theory
was mainly stimilated by the possible consequences of a strong
anomolous rmu-meson-nucleon interaction on the interpretation of
the mu-mesonic x=-ray experiments.12 Coagmic ray experiments on
the scattering of fast rm~mesons by nuclel suggested that some
anomolous scattering exists, vut the interpretation of the experi-
ments are not completely unambiguous, and thsre is considerable
disagreement on the magnitude and existence of the effect, When
these experiments were analysed, the expected multiple scattering
distribution for an extended nucleus Wwas obtained by various ap-
proximations such as comparing the experimental results with the
predictions of the Moliére and Olbert theories, or by using the

Williams theory. In all cases the old "large" nuclear size was

used which gives <fr2> twice that favored by recent experiments,

Thus the experiments were always analysed on a bssis that under-
estimated the coulomb multiple scattering. Aside from the results
ol the experiments discussed belcw, we note that the mu-mesonic
X-ray results indicate that any anomolous energy independent
nuclear potential for the mu-meson can 1n 1its effect at most be
equivalent to a slight change in the cholce of the nuclear radius
when calculating the coulomb interaction, This could not explain

any significany portion of the anomolous scattering reported in
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some of the experiments. Also, experiments on the nuclear inter-

action by Annils et alle can be explained without invoking any

18 M, annis, H. C. Wilkins, and J. D. Miller, Phys. Rev. 9l,

1038 (195Y4)

anomolous interaction, Such an "anomolous interaction" would have
to be strongly energy~dependent and thus only appear strongly at
high energies to explain the low energy experiments,

Amaldi and Fidecaro5 Investligated the large angle scattering
of fast mu-mesons in the energy bands 200 Mev to 320 Mev and > 320
Mev, using a counter hodoscope. They compared the large angle
multiple scattering in iron and lead, emphasizing the iron re-
sults as far as anomolous scattering is concerned., About § x 105
incident mesons were counted and results for iron were consistent
with no anomolous interaction, In their series 2 run on iron 249,
168 parvicles were incident and 3 scattered particles were ob-

served in each energy band, When an extra 200 gm/cm2 of bricks
weve

‘wap placed above the apparatus to decrease the number of protons

etce., 204, 91L particles were incident with one scattered count

in the lower energy band and none in the higher energy band., The
latter numbers ars about the expected values for scattered protons,
etc., with that amount of filtering. They set am upper limit for
"gnomolous scattering" of ~ L.5 x 10-290m?/nuclean in the lower

..290

energy band and ~ 2.3 x 10 mz/nuclean in the upper energy

band, These values assume Isotropic scattering for the anomolous
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part,

Whittemore and Shutt lnvestigated the multiple scattering of
negative mu~-mesons in 5 cm of lead for particles having 0.3 Bev £
cp £ 3.1 Bev using two cloud chambers and a magnet for momentum
analysis, Their experimental points essentlally fall on the Scott~
Snyder (Moliere) curve for P$S< 13 Bev degrees, with one point at
17 Bev degrees a factor of about two below the Moliere curve (but
with a large statistical uncertainty)., From Flg, 5 these points
would also fall &bove our theoretlical curve, The principle dif-
ficulty in the interpretatlon of these results 1s the question of
the certainty that only mu-mesons were Involved, It is of interest
in thls connection that the later experlments were conducted under-
ground, or, in one case, using 1l meter of lead absorber above the
cloud chamber to assure greater beam purliy., Also we should llkas

19

to point out that measurements on the scattering of cp ~ 200 Mev

i s

19 Jomn 0. Keasler and Leon M, Lederman, Phys. Rev, 9L,
689 (1954)

n-mosons on Pb show differentlal cross sections for elastic plus
inelastic scattering which are always ~ 0,1 barn or larger, By
contrast, the elastlc scattering experiments using electrons of
comparable momentum glve differential cross sections which are

Af10'6

barns at 1200, a factor cf 105 below the m~-meson cross
sectionn, This contrast 1s admittedly extreme, but it emphaslzes

the importance of not underestimating the possible importance of
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small'percentages of beam contaﬁination in such experiments,
The remaining experiments used greater absorber thickness at :
sea level, or operated underground to minimize beam contamination, '
They have the common feature, however, that the momentum distri-
”bution of the incident particles was not measured directly, but

was assumed known from other sources, Any error in the assumed

known momentum distribution would tend to affect all of these
experiments in a similar fashion, The fact that the observed
scattering distributions are not given directly as a function of
P © makes comparison of their final curves with our calculated
M( @) difficult,

George, Redding, and Trent measured the rmultiple scattering
of penetrating cosmic ray particles in 2 cm lead plates at 60 m.w.e.
underground using a counter~triggered cloud chamber, Three ]
experimental arrangements were used for the triggering counter
telescope involving O, 5, and 10 cm lead below the cloud chamber,
The particles were all assumed to be p~-mesons and the momenta of :
the individual particles werses known only to be above the cutoff 3
values determined by the lead absorber thickness. The analysis

was made by assuming that the energy df stribution was flat for

E << E, = 12 Bev, The experimental distribution N(9) was com~
1

pared with one calculated using a welghted average of gaussian i
functions (one for each energy) in accord with the above pre-

scription for the assumed energy distribution, No anomolous

scattering was chbserved using 10 cm of lead, but a small amount !

of "anomolous scattering" appeared at larger angles whem O or 5 cm
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lead was used, They conclude that no anomeclous scattering 1s ob-
served for kinetic energies >~ 200 Mev, and some may exist for
lower energies, It is interesting to note that the curves for

O and 5 cm lead show essentially the same excess over their
Mtheoretical curves whether point nucleus scattering is included
or not, It would be desirable to have a direct measurement of
the momentum distribution of the incident particles,

Leontic and Wolfendale used a multliplate cloud chamber at ses
level with a counter telescope that required that detected par-
ticles traverse 1 meter of lead above the chamber, six 2 cm lead
plates inside the chamber, and O, 5, or 10 cm lead below the
chamber, It was assumed that the 1 meter of lead excluded all
but p-mesons from the measurements, The main analysis compared
the maximum scattering in any of the center four plates with the
r, m. 8. angle for the four plates, The analysis made the as-
sumption that the basic multiple scattering law for any given
particle should effectlively be a gaussian at all angles if no
anomolous scattering were present, By an ingenious analysis they
showed that the results were inconsistent with this assumption,

A further analysis assumed that an "anomolous scattering gaussian®
would be superimposed on the normal rultiple scattering gaussian

in some emall fraction of the plate traversals, They then ob-
tained a best matching of parameters, Unfortunately, the selection
criterion for considere events was blased in favor of gelecting
cases where "anomolous scattering'" (or the non-gaussian multiple

scattering tail) occured. Dr, Wolfendale informs®® us that &
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preliminary re-examlnation suggests that the essentlial fsatures
of the results will not be geriously altered on correcting this
blas factor, but we have not seen the details of such a re-examin-
ation,

The measursments of Leontic and Wolfendale have been exten-
ded by McDiarmia®? uaing a d4ifferent and interesting analysis,

20 Private Communjcation, We wish to thank Professor G, D,

Rochester and Dr, A, W, Wolfendale for corresprnding with us

concerning the anslysis of the experiments of the Manchester

group on p-meson scattering, The paper by McDiarmid is scheduled

for publication in Phil, Mag.

The results seem to contradict those of George, Redding and Trent
in that no anomolous acatterimng is observed for low energles, At
higher energies the expérimental results are between the Molisére
and Olbert multiple scattering curves for a (partially) assumed

distribution of incident particle energies, The results are closer

to the Molidre than to the Olber: curves., We have not, however,

performed the detalled folding together of our final curve with

their derived momentum distributlions as 1s necessary for a quant=-

itative comparison,.
References to earlier papers will be found in the articles

discussed abgve.
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FIGURE CAPTIONS

Curves 1llustrating the first method of computing the
multiple scattering distribution Ml(y) for cp = 1 Bev
in 2 cm Pb, including only coherent scattering, g =
single scattering law; MAl = pmultiple scattering gaus=-
slan for single scatterings through y £ 0.5; Mg, =
multiple scattering distribution for single scatterings

c

through y > 0.5; FN 1s the assumed coherent nuclear

form factor, Multiply y by l.74 for Bev degrees., A

nuclear silze R = 1.0A1/3 x 10_13

cm was used for all
of the examples of the figures,as dlscussed in Ap~
pendix A,

Curves for the same case as in Fig, 1. The Molidre
and Olbert multiple scattering distributions are
shown for comparison with Ml(y). The Olbert distri-
bution is for a single scattering cutoff angle of y =
1.0. The point nucleus and extended nucleus single

scattering distributions are g’

and ge

Curves for cp = 1 Bev and 2 cm Pb using :;k for the
total elastic plus 1inelastic scattering. g‘ = point
nucleus single scattering law; g = g’i}% is the as-
sumed extended nucleus single scattering law; M1

is the resulting multiple scattering distribution,
Multiply ¥y by 1.74 for Bev degrees,

Curves for cp = 1 Bev and 5 cm Pb using only coherent

scattering. gl, g, :;%, and Ml have the same meaning
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FIGURE CAPTIONS (Continued)

as in the preceding figures, Multiply y by l.74 for
Bev degrees,

Fig. 5. Curves for cp = 1 Bev and 5 cm Pb using the total elastic
plus inelastic scattering. The symbols have the same

mesning as in the preceding figures.
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TABLE II,

VALUES OF q(L,X) for L = 1/li,

(Bq. L43)

X a(L,X)
0 3,230
o5 1,595
1.0 -3,218
1.5 ~11,339
2.0 -22,07
2.5 ~34.65
3.0 =147 140
345 -57.148
4.0 -60,35
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